Odborná sekce č. 7

Geotechnika

Garantující ústav: Vedoucí ústavu: Garant odborné sekce:	Ústav geotechniky doc. Ing. Lumír Miča, Ph.D. Ing. Věra Glisníková, CSc.
Odborná porota:	
Předseda:	Ing. Karel Zdražil, CSc.
Členové:	Ing. Augustin Leiter, Ph.D.
	Ing. Jaroslav Havlíček
Místo konání soutěže:	FAST VUT v Brně, Veveří 331/95
	III. patro, počítačová učebna GTN B331

Seznam soutěžních prací:

1. Vyhodnocení vybraných zatěžovacích zkoušek duktilních pilot instrumentovaných optovláknovými senzorickými systémy

Řešitel:Christian Genzer, 4. ročník, B4K2Vedoucí práce:Ing. Juraj Chalmovský, Ph.D.

2. Vyhodnocení zatěžovacích zkoušek trvalých horninových kotev osazených optovláknovými snímači

Řešitel: Zdeněk Chylík, 4. ročník, B4K1 Vedoucí práce: Ing. Juraj Chalmovský, Ph.D.

3. Rozbor možností využití metody FELA při analýze vnější stability vybraných geotechnických konstrukcí

Řešitel: Petr Juračka, 4. ročník, B4K1 Vedoucí práce: Ing. Juraj Chalmovský, Ph.D.

4. Aplikace metody přenosových funkcí pro stanovení mezní zatěžovací křivky mikropilot

Řešitel: Matěj Mareš, 4. ročník, B4K3

Vedoucí práce: Ing. Juraj Chalmovský, Ph.D.

5. Pažení stavební jámy

Řešitel: Mykola Šajuk Vedoucí práce: Ing. Věra Glisníková, CSc.

Vyhodnocení vybraných zatěžovacích zkoušek duktilních pilot instrumentovaných optovláknovými senzorickými systémy

Christian Genzer Vedoucí: Ing. Juraj Chalmovský, Ph.D. Ústav geotechniky 25. dubna 2023

Ražené duktilní piloty

- Silnostěnná litinová trubka (118/7,5 mm)
- Standardní délka 5 m kónické napojení
- Pata opatřená razící botkou
- Ražení pomocí hydraulického beranidla
- Průběžná injektáž skrz dřík

Simple Connections using Bell and Spigot Connections. Geostructures: Terratest Company [online]. [cit. 2023-03-20]. Dostupné z: <u>https://www.geostructures.com/solutions/foundation-support/ductile-iron-piles-dips.html</u>

Distribuované optovláknové senzory (DFOS)

- Optické vlákno tvořeno čirým sklem + pláštěm + obalem
- Princip přirozeného rozptylu světla
- Většina světla projde skrz, malá část se však odrazí zpět
- Měří se čas odrazu světla, tím lze dopočítat vzdálenost libovolného bodu
- Porovnáním vzdáleností konkrétních bodů v počátečním stavu a ve stavu napjatosti lze určit hodnotu přetvoření

Pozitiva & negativa DFOS

- Nekonečné množství měřících bodů
- Snížení vzdálenosti měřících bodů z metrů na milimetry
- Přehled o chování prvku v celé délce
- Vysoká přesnost

- Vysoká přesnost a citlivost
- Odolnost vůči okolním vlivům
- Cena

Cíle práce

- Provést systematické vyhodnocení dostatečného počtu zatěžovacích zkoušek (různé geologie)
- Vyfiltrovat oscilace v průběhu poměrných přetvoření způsobené přichycením optických vláken k tělu piloty
- Odfiltrovat vznik ohybu v průběhu zatěžování
- Sestavit průběhy poměrného přetvoření po délce piloty
- Stanovit průběhy mezního plášťového tření a korelovat je s razícími časy v jednotlivých segmentech
- Stanovit přenosové koeficienty K_{SHAFT} pro ověření hodnot získaných zpětnou analýzou zatěžovacích zkoušek

Přehled analyzovaných pilot

Lokalita	Hollern	Fronius Into Satt	ernational, ledt	Lask Station, Linz		WLC Wolfganggasse, Wien	
Dominantní geologie	Jíl	Jíl písčitý, štěrk písčitý		Jemný písek, písčitý štěrk		Hlína, písčitý jíl	
Typ zkoušky	Tlak	Sekundární HPS (tah)	Tlak	Sekundární HPS (tah)	Terciární HPS (tah)	Sekundární HPS (tah)	Terciární HPS (tah)
Délka piloty [m]	9,0	12,1	11,7	14,7	14,7	18,2	18,2
Průměr piloty [cm]	23	26	23	28	28	22	22
Průměr trubky [mm]	118/7,5	170/9,0	170/9,0	170/9,0	170/9,0	118/7,5	118/7,5
Maximální zatížení [kN]	800	1130	1890	2000	2000	1000	1000

Fakulta stavební • Vysoké učení technické v Brně

Т

Průběh měření

- Každá pilota opatřena min. 2 optickými kabely naproti sobě téměř po celé délce piloty
- V průběhy ražby standartně měřena spotřeba betonu a razící čas
- Během zatěžování zaznamenáváno poměrné přetvoření po centimetrech pro jednotlivé zatěžovací kroky

Ergebnisse der faseroptische Messungen Besprechung mit der Fa. Keller Grundbau, 30.07.2018: INSTITUT FÜR INGENIEURGEODÄSIE UND MESSSYSTEME. Graz, 2018.

Nevýhoda vysoké přesnosti a citlivosti měření - Hollern

Postup vyhodnocení

- Pilota rozdělena na metrové úseky
- Stanoven medián přetvoření reprezentující každý segment

Postup vyhodnocení

- Částečné odfiltrování ohybu
- Vyřazení silně zkreslených úseků

Postup vyhodnocení

- Výpočet sil
- U tahových zkoušek byl navíc zohledněn vliv dosažení pevnosti betonu v tahu
- Redukce průřezu při dosažení P_{cr}

Postup vyhodnocení

- Stanovení mezního plášťového tření
- Stanovení koeficientů K_{SHAFT}

Děkuji za pozornost

Vyhodnocení zatěžovacích zkoušek trvalých horninových kotev osazených optovláknovými snímači

ústav geotechniky Vedoucí práce SVOČ: Ing. Juraj Chalmovský, Ph.D.

Zdeněk Chylík

25. dubna 2023

Lokalita

Bratislava

A A A AMA A

- Dvořákovo nábřeží
- Vydrica

[02] Bratislava, Slovensko, Vydrica, Vodná veža, nábr. Armádneho generála Ludvíka Svobodu (20220606). Flickr [online] Sutton: Flickr, Inc., ©2021 [cit19.04.2023]. Dostupné z : https://www.flickr.com/photos/monudet/52131904244

[01] WOSCHITZ H., WINKLER M., Fiber Optic Measurements during load tests and prestressing of Ground-Anchor #36 and #52 [zpráva z měření]. 06.07.2021 [cit. 19.04.2023]

Kotvy:

- #36, #52
- I_b = 20 m
- I_f = 30 m
- 19 pramenců

Technologie zajištění

Permanent Strand Anchor

Zajištění svahu

- Více než 150 trvalých kotev
- 40 m 70 m.
- Zkoušecí síly v jednotkách MN •

Trvalé horninové kotvy

- Životnost jako konstrukce
- 2 antikorozní ochrana •

Strand Anchor – pramencová kotva Wedge – kuželík Wedge plate - kotevní objímka Cap - víko Bearing plate – kotevní deska Steel Trumpet – ocelová průchodka Spacer – distančník Corrugated sheating - vrubovaná trubka Cement grout - cementová injektáž External grout pipe – vnější injektážní trubice

Free stressing length - volná délka táhla Bond length - kořenová délka

[03] Ground Anchors, ForceTec [online] Dubai : ForceTec LLC . ©2021 [cit 19.04.2023]. Dostupné z: https://forcetecgroup.com/strand-anchors/ **Bearing Plate** Inner Corrugated Sheathing Outer

Optická vlákna

[04] How does and optical strain gauge work?, Tacuna Systems [online] Johnson Rd., Unit 17364: Tacuna Systems ©2021 [cit. 19.04.2023]. Dostupné z: https://tacunasystems.com/knowledge-base/how-does-an-optical-strain-gauge-work/

- Kontinuální měření po celé délce
- 5 snímačů na kotvu (nyní využity 4)
 - 2x pramenec
 - 1x vnitřní injektáž
 - 1 x vnější injektáž

"core" – skleněné jádro "cladding" – reflexní vrstva "coating" – ochranný plášť

Záznam z optických vláken

Standardní měření

Cíle SVOČ

- Srovnání standardního monitoringu a monitoringu pomocí optických snímačů při posouzení výpočtové volné délky
- Stanovení plášťového tření ve volné délce
- Popis chování všech částí kotvy (pramence, vnitřní injektáž, vnější injektáž)

Komparace 2 metod meření při vyhodnocování L_{app}

- Větší hodnoty ze standardního měření
- Podobný trend blíže k dolní hranici
- Data z optických kabelů téměř totožná

Dílčí závěr:

- Možné zatlačení kotevní hlavy dle svědectví ze stavby
- Oscilace negativně ovlivní prodloužení

Stanovení a zobrazení plášťového tření ve volné délce

Plášťové tření ve volné délce - τ Pramenec 1 - kotva #52 Plášťové tření ve volné délce po 4 m Pramenec 2 - kotva 52

- Nutné po intervalech oscilace
- Zvětšení tření > Možné zakřivení vrtu

Srovnání plášťového tření

- V rámci jedné kotvy rozdíl v absolutních hodnotách
- Odlišnosti v převážně do 5 kPa

Chování kotvy volná délka / kořen

Ideální stav – stejné prodloužení v táhle, vnitřní i vnější injektáži (Přenos do skalního prostředí)

Chování kotvy volná délka / kořen

Kotva #52										
ec 1	P/P _P [%]	r [cm]	ارt [cm]	l, t [cm]	t[%]	<mark> _t</mark> [%]				
	40	51	77	210	27	73				
len(55	57	102	238	30	70				
ram	70	60	107	259	29	71				
Ъ	85	61	121	290	29	71				
	100									

Závěry

- "Nadhodnocené" výsledky standardní monitoring
- Žádné příliš extrémní hodnoty tření
- Posun kořene = "Rebonding"
- Prokluz mezi injektážemi = nejslabší rozhraní je na PE trubici

Možné pokračování v tématu

- Setrvání monitoringu kotev stejnou technologií
- Korekce dat naměřených optickými snímači
- Matematické modelování rozhraní: volná délka / kořen

děkuji Vám za pozornost

www.fce.vutbr.cz

Zdroje

[01] WOSCHITZ H., WINKLER M., Fiber Optic Measurements during load tests and prestressing of Ground-Anchor #36 and #52 [zpráva z měření]. 06.07.2021 [cit. 19.04.2023]

[02] Bratislava, Slovensko, Vydrica, Vodná veža, nábr. Armádneho generála Ludvíka Svobodu (20220606). Flickr [online] Sutton: Flickr, Inc., ©2021 [cit19.04.2023]. Dostupné z : <u>https://www.flickr.com/photos/monudet/52131904244</u>

[03] Ground Anchors, ForceTec [online] Dubai : ForceTec LLC , ©2021 [cit 19.04.2023]. Dostupné z: https://forcetecgroup.com/strand-anchors/

[04] How does and optical strain gauge work?, Tacuna Systems [online] Johnson Rd., Unit 17364: Tacuna Systems ©2021 [cit. 19.04.2023]. Dostupné z: <u>https://tacunasystems.com/knowledge-base/how-does-an-optical-strain-gauge-work/</u>

Rozbor možností využití metody FELA při analýze vnější stability vybraných geotechnických konstrukcí

Zpracoval: Petr Juračka Vedoucí práce: Ing. Juraj Chalmovský Ph.D. 25. duben 2023

FELA

- FELA= Finite element limit analysis
- OPTUM G2 (FEM)
- Limitní analýza [2]

FELA – Lower bound

Výchozí zatěžovací rovnice [1]

 $c_1^T \sigma + c_2^T h$

• Podmínky [1] $A_{11}\sigma + A_{12}h = b_1$ $A_2\sigma = b_2$ $f(\sigma^i) \le 0$

FELA – Upper bound

Výchozí zatěžovací rovnice [1]

$$c_1^T u + c_2^T \lambda - c_3^T u$$

• Podmínky [1] $A_{11}u + A_{12}\lambda = 0$ $A_2u = 0$ $A_3u = 0$ $A_4u \le 0$ $\lambda \ge 0$

Metoda redukce smykové pevnosti

- Proces několika kroků [1]
 - 1. F₀=1
 - 2. $c_a'=c'/F_0 \phi_a'=\phi'/F_0$
 - 3. $\gamma_{\rm p} \rightarrow m_0 = \gamma_{\rm p} / \gamma$
 - 4. $m_0 < 1 \rightarrow F_1 = F_0 + 0, 1$
 - 5. $C_a' = C'/F_1 \qquad \phi_a' = \phi'/F_1$
 - $6. \ \gamma_{\text{p}} \mathbf{1} \to m_{1} = \gamma_{\text{p}} / \gamma$
 - 7. $(m_1-1)(m_0-1) > 0 \rightarrow m_0=m_1 \rightarrow F_0=F_1$

Problém plasticity

- Asociovaná plasticita
 - F=Q
 - φ=ψ
 - Δε_P=0
 - Přírůstky deformací závisí na normále k ploše Q když je identická s F tak je to zároveň normála k ní
 - Snazší výpočet
 - Nadhodnocení dilatance

Problém plasticity

- Neasociovaná plasticita
 - F≠Q
 - φ≠ψ
 - $\Delta \epsilon_{P} \neq 0$
 - Přírůstky plastických deformací závisí na normále k ploše Q, která není identická s plochou F
 - Komplikovanější výpočet
 - Dilatance více odpovídá realitě

Davisův přístup

- Použit pro neasociovanou plasticitu [2]
- c*=β•c'
- $tan\phi^* = \beta \cdot tan\phi^{\prime}$
- Rozdělení
 - $A neměnný \phi i \beta$
 - $B proměnné \phi i \beta$
 - C proměnné β a neproměnné ϕ

OPTUM G2

Obr. 1 Optum G2 rozhraní, autor

OPTUM G2

Obr. 2 Optum G2 rozhraní výsledků, autor

- Výběr úloh
- Adekvátní porovnání výsledků
- Plaxis 2D

Obr. 3 Plaxis 2D rozhraní, autor

Odvodněné podmínky

Homogenní svah sklon 1:1

Obr. 4 Homogenní svah s podložím [3]

FoS

- FELA asoc. LB=2,756 UB=2,698
- FELA neasoc. LB=1,907 UB=1,942
- SRM asoc. FoS=2,69
- SRM neasoc. FoS=2,544
- SRM Davis A FoS=1,767

Odvodněné podmínky

Homogenní svah sklon 2:1

Fig. 10. Example 2: A homogeneous slope with a slope angle of 25.67° (2:1), $c'/\gamma H = 0.05$, H = 5 m. The global size of the seed for the mesh is H/50.

Obr. 5 Homogenní svah bez podloží [4]

FoS

- FELA asoc. LB=1,373 UB=1,386
- FELA neasoc. LB=1,288 UB=1,3
- SRM asoc. FoS=1,276
- SRM neasoc. FoS=1,250
- SRM Davis A FoS=1,194

- Odvodněné podmínky
 - Nehomogenní svah s oslabenou vrstvou

Fig. 13. Example 3: A slope in layered soil. The global size of the seeds for the mesh is 0.15.

Obr. 6 Svah s oslabenou vrstvou [4]

- Odvodněné podmínky
 - Nehomogenní svah s oslabenou vrstvou

 FELA (wl Davis zbytek asoc.) LB= SRM asoc. FoS SRM neasoc. FoS SRM vše Davis A zbytek neasoc.) FoS 	=1,124 L	JB=1,151
 SRM asoc. FoS SRM neasoc. FoS SRM vše Davis A zbytek neasoc. FoS 	=1,114 L	JB=1,38
 SRM neasoc. FoS SRM vše Davis A FoS SRM (wl Davis A zbytek neasoc.) FoS 	S=1,026	
 SRM vše Davis A FoS SRM (wl Davis A zbytek neasoc.) FoS 	S=1,020	
• SRM (wl Davis A zbytek asoc.) FoS	S=0,998	

Neodvodněné podmínky

Nehomogenní svah

Fig. 9. Example 4: Undrained clay slope with a weak foundation layer $(D = 2, c_{u1}/\gamma H = 0.25)$

Obr. 7 Nehomogenní svah s oslabeným podložím [5]

FoS FELA LB=1,441 UB=1,456 SRM FoS=1,455

Neodvodněné podmínky

Nehomogenní svah s oslabenou vrstvou

Fig. 6. Example 3: Undrained clay slope with a foundation layer including a thin weak layer (D = 2, $c_{u1}/\gamma H = 0.25$)

FoS FELA LB=1,474 UB=1,486 SRM FoS=1,482

Obr. 8 Svah s oslabenou vrstvou [5]

- Projekt Vlachovice
- SRM x FELA ověření
- Ustálené a neustálené proudění

Závěr

- Omezení
 - Materiály
 - Neasociovaná plasticita
 - Vývoj
- Výhody
 - Vývoj
 - Intuitivnost
 - Odpovídající realitě
 - Rychlost výpočtu

VÝSTUP

Zdroje

- [1] Sloan SW. Geotechnical stability analysis, Geotechnique, 2013
- [2] F. Tschuchnigg, H.F. Schweiger, S.W. Sloan, Slope stability analysis by means of finite element limit analysis and finite element strength reduction techniques. Part I: Numerical studies considering non-associated plasticity, Geotechnique, 2015
- [3] Y.M. Cheng, T. Lansivaara, W.B. Wei, Two-dimensional slope stability analysis by limit equilibrium and strength reduction methods, Comput Geotech, 2006
- [4] S.Y. Liu, L.T. Shao, H.J. Li, Slope stability analysis using the limit equilibrium method and two finite element methods, Comput Geotech, 2014
- [5] Griffiths DV, Lane PA, Slope stability analysis by finite elements, Géotechnique, 1999

Děkuji za pozornost

PREZENTACE PRÁCE SVOČ

Aplikace metody přenosových funkcí pro stanovení mezní zatěžovací křivky mikropilot Vedoucí práce: Ing. Juraj Chalmovský, Ph.D.

Matěj Mareš

duben 2023

DRUHY ZKOUŠENÝCH MIKROPILOT

VRTANÉ MIKROPILOTY VYZTUŽENÉ GEWI TYČÍ

SAMOZÁVRTNÉ MIKROPILOTY SYSTÉMU ISCHEBECK TITAN

dostupné z: TITAN micropiles an Innovation prevails, https://www.ischebeck.de/en/service/downloads/

ZATĚŽOVACÍ ZKOUŠKA MIKROPILOTY

dostupné z: Static load tests of piles and micropiles, Evaluation of monitoring results, fa Keller, VUT v Brně

MZK ZÍSKANÁ ZE ZATĚŽOVACÍ ZKOUŠKY

MP1

METODA PŘENOSOVÝCH FUNKCÍ

- rozčlenění prvku na segmenty
- nahrazení kontaktu zemina-prvek přenosovou funkcí
- počáteční posun v patě piloty a stanovení normálového napětí
- stanovení mobilizovaného plášťového tření a výpočet plastické deformace
 - pokud iterace dovršila požadovaného posunutí segmentu, pokračuje se na další segment
- sestavení MZK, plášťové tření

CHALMOVSKÝ, Juraj. *Využití metody přenosových funkcí pro predikci chování hlubinných základů v ČR*. Brno, 2021. Souhrnná výzkumná zpráva. Vysoké učení technické v Brně.

VÝHODY METODY PŘENOSOVÝCH FUNKCÍ

- zohlednění tuhosti piloty, která má vliv na mobilizaci tření a tvar MZK
- metoda je založena na fyzikálních principech a uvažuje minimální počet empirických konstant
- dává rovněž více výstupních údajů, jako jsou MZK pláště a paty, průběh mobilizovaného plášťového tření
- dobrý kompromis mezi empirickými metodami a metodou konečných prvků

ROZHRANÍ PMpLTO

n x

PMpLTO ver. 1.2: MP2_0M_parametrická studie.pout

Soubor Nastavení Nápověda

DALŠÍ VÝSTUPY POSUN PILOTY S HLOUBKOU PLÁŠŤOVÉ TŘENÍ NA SEGMENTECH

FITTING ZPĚTNĚ PREDIKOVANÉ MZK

ZDROJE

- Static load tests of piles and micropiles, Evaluation of monitoring results, firma Keller, VUT v Brně
- Výstupy programu PMpLTO
- TITAN micropiles an Innovation prevails, <u>https://www.ischebeck.de/en/service/downloads/</u>
- CHALMOVSKÝ, Juraj. *Využití metody přenosových funkcí pro predikci chování hlubinných základů v ČR*. Brno, 2021. Souhrnná výzkumná zpráva. Vysoké učení technické v Brně
- BOHN, C., LOPES DOS SANTOS, A., FRANK, R. Development of axial pile load transfer curves based on instrumented load tests. Journal of Geotechnical and Geoenvironmental Engineering, 2016, vol. 143, no. 1.

Zajištění stavební jámy

Autor: Mykola Šajuk Vedoucí: Ing. Věra Glisníková, CSc. Ústav geotechniky

Duben 2023

Umístění a popis stavby

Stavba se nachází v Pardubickém kraji v obci Vraclav, ležící čtyři kilometry západně od Vysokého Mýta.

Jedná se o Tunel Homole délky 570 m, který je tvořen západní hloubenou částí, raženou částí a východní hloubenou částí. Stavba je jedním z celků dálnice D35 úseku Ostrov – Vysoké Mýto.

Vizualizace budoucího tunelu

ŘEŠENÝ OBJEKT

Řešeným objektem je západní hloubená část, respektive její severní stěna. Délka stavební jámy 70,0 m a hloubka 18,75 m.

Geologie

Průzkumný vrt

	-	-										
Stratigrafie	Nadmořská výška (m)	Vrtný profil	Hloubka (Mocnost) (m)	Hladina podzemní vody (m)	Vzorek Lab. číslo	GEOLOGICKÝ POPIS ZEMIN A HORNIN	Zaffidění ČSN 736133	RQD [%]		Geotyp	Těžitelnost ČSN 73 6133	Vrtatelnost TP 76
\sim	264,74		Ē 0,50			humózní pokryv, organické hlíny, mírně písčité; tmavě hnědé, ornice	F6 O			Q0	Ι	Ι
<u> </u>	264,24		E 1,00		0,0	jíly písčité; tuhé až pevné; rezavě hnědé; písčitá příměs středně zrnitá;	F4			Q3a	Ι	Ι
	263,24		(1,00) 2,00			eluviální pokryv, jíly středně až vysoce plastické; šedo-běžové; bílé mramorování; rezivé polohy; vápnité; pevné; eluvium křídy	F6			K1a	I	I
			(1,60)			zcela až silně zvětralé slínovce rozvrtané na meteriál charakteru zeminy tř. F6; běžovo-šedé; úlomky o velikosti 10 - 30mm; u báze polohy R5; vápnité	R6(R5)			K1b	I	п
	261,64		3,60 (1,20)			rychlý přechod do mírně zvětralých slínovců; rozbíjitelných; šedých až béžovo-šedých; svrchu pevnějších; u báze úlomky a destičky o velikosti 20 - 100mm (floušťka <40mm)	R4			К3	I-II	ш
K	254,24		(6,20)		5.00 5.00	navětralé slinovce; šedé; s častým zareznutím okolo puklin(zareznutí až cca 40 mm od puklin); subhorizontálně vrstevnaté; jádro 50 - 200 mm (extrémě 350 mm); pukliny rovné až zvlněné; hladké až středně drsné; sevřené až 1-2mm; bez výplně; limonitizované; dále i kosé pukliny 30°- 50°(v hloubce 7,8; 10,3; 10,5; m) místy i mírný sklon 10°- 20 (v hl. 9,9 m)	R3	•25	95 95 95 95	K4	Ш	IV
	248,24		(6,00)		11,52	slínovce zdravé; šedé; jen místy zarezlé; pukliny místy limonitizované; rozbíjítelné spíše hůře; jádro á 100 - 600mm (extrémě až 1000mm)při vyschnutí místy destičkovitý rozpad (slabší polohy)	R2/R3	•	•100 •100 90 •100 95	K5	III	v

Svrchní vrstva podloží je tvořená antropogenní navážkou a písčitými jíly do hloubky 2,0 m. V další vrstvě se objevuje zcela až silně zvětralý slínovec do hloubky 3,6 m. Následně pokračuje zvětralý slínovec do hloubky 4,8 m a navětralý slínovec do hloubky 11,0 m. Poslední vrstvu tvoří zdravý slínovec.

Fakulta stavební • Vysoké učení technické v Brně

Cíl práce

 Cílem práce je návrh několika vhodných alternativ zajištění vybrané stavební jámy, optimalizace návrhu a ekonomické vyhodnocení jednotlivých navržených variant

Zajištění stavební jámy

Varianta 1: Pilotová stěna

<u>Pilota</u>

- Průměr = 0,8
- Osová vzdálenost = 1,5 m
- Délka = 19,75 m
- Beton C20/25
- Podélná výztuž: 16 kusů ø28 mm
- Smyková výztuž: ø10/150 mm

<u>Pramencová zemní kotva:</u>

- Sklon kotev = 20,0°
- Volná délka = 7,0m
- Délka kořene = 12,0m
- Osová vzdálenost = 3,0 m
- Počet pramenců = 3 kusů
- Průměr kořene = 130 mm

<u>Pramencová zemní kotva:</u>

- Sklon kotev = 20,0°
- Volná délka = 6,0m
- Délka kořene = 12,0m
- Osová vzdálenost = 3,0 m
- Počet pramenců = 3 kusů
- Průměr kořene = 130 mm

Varianta 1: Pilotová stěna – Vnitřní síly

Varianta 1: Pilotová stěna – Deformace a napěti na konstrukci

Varianta 1: Pilotová stěna – Vnější stabilita svahu

Smyková plocha : polygonální 👻 🚺 Na	hradit		Odstranit (•) Převést na kruh
– Parametry výpočtu –	- Polyg	jonální smyková p	locha	Posouzení stability svahu (Sarma)
Metoda : Sarma 👻	Číslo≜	x [m]	z [m]	Vyuziti: 50,8 % Stabilita svahu VYHOVUJE
Typ výpočtu : Optimalizace 👻	1	-14,27	-16,75	5
Omezení není zadáno	2	-10,14	-18,28	3
	4	-1,00	-21,0	1
Délky kotev uvažovat nekonečné	5	21,52	2,00	0

Fakulta stavební • Vysoké učení technické v Brně

Varianta 1: Pilotová stěna – Dimenzování piloty

Varianta 1: Pilotová stěna – Únosnost piloty

Max. deformace		=	-18,2	mm
Max. posouvající síla na průřez	Q _{max}	=	614,44	kN
Max. moment na průřez	M_{max}	=	1071,11	kNm

Posouzení : celá	konstrukce 🔻		Posuzovat průl Výsledky	řez		0,80
Počet :	16,00 [ks]	Smyková výztuž	SMYK :	VYHOVUJE	(93,7%)	000
Krytí :	40,0 [mm]	Profil : 10,0 [mi	(KONSTR. ZÁSAD	Y: VYHOVUJE	(91,8%) (13,3%)	Brof. 10,0 mm, vzd. 150,0 mm
Profil : Profil příložek :	28,0 [mm]	VZdalenost : 150,0 [mi	וו			

Fakulta stavební • Vysoké učení technické v Brně

6

0

Krytí = 40,0 mm

Varianta 1: Pilotová stěna – Únosnost kotev

Číslo▲	Žíslo▲				Únosnosti			
	Hloubka	Název	Maximální síla	Přetržení kotvy	Vytržení ze zeminy	Vytržení ze zálivky	Využití	Posouzení
	z [m]		F [kN]	R _t [kN]	R _e [kN]	R _c [kN]	[%]	
1	4,00	VSL dočasná kotva 0.6" S 1860	529,62	620,00	720,06	579,19	91,44	Vyhovuje
2	10,75	VSL dočasná kotva 0.6" S 1860	536,76	620,00	1211,83	579,19	92,67	Vyhovuje

Varianta 1: Pilotová stěna – Únosnost převázky

Zajištění stavební jámy

Varianta 2: Záporové pažení

Varianta 2: Záporové pažení – Vnitřní síly

Varianta 2: Záporové pažení – Deformace a napěti na konstrukci

Varianta 2: Záporové pažení – Vnější stabilita svahu

Smyková ploch	a: polygonální 🔻	🖸 Nal	hradit	🟒 Upravit	🗶 Odstranit	ርኃዞ	Převést na kruh	
— Parametry výpočtu ————————————————————————————————————				gonální smyková	plocha	Posouzení stability svahu (Sarma		
Metoda :	Sarma	-	Číslo≜	x [m]	z [m]		Využití : 49,7 %	
Tvp výpočtu :	Optimalizace	-	1	-7,60) -16	,75		
ijp ijpoeta i	optimuizace		2	-0,31	I -19	,45		
Omezení	Omezení není zadáno		3	0,21	-18	,33		
			4	9,22	2 2	,00		
Délky kotev uvažovat nekonečné								

Varianta 2: Záporové pažení – Posouzení zápory

Varianta 2: Záporové pažení – Posouzení zápory

kázev průřezu : I-průřez : HE 280 B, a = 1,50 m Vlastní Délka úseku : I = 18,75 [m] coef. redukce tlaků pod dnem jámy : počítat \checkmark 0,63 [-] Geometrie Dsová vzdálenost profilů : a = 1,50 [m] Průřez Katalog Svařovaný kázev : HE 280 B Informace A = 8,76E-03 [m ² /m] I = 1,28E-04 [m ⁴ /m] Ny1 = 9,176E-04 [m ³ /m] W _{ply} = 1,023E-03 [m ³ /m] Max. deformace = -32,8 mm Max. deformace = -32,8 mm Max. posouvající síla na průřez Q_{max} = 438,74 kN Max. moment na průřez M_{max} = 323,30 kNm kormálová síla na průřez (vliv kotev) N = 582,43 kN	yp stěny :	Ocelový I-průřez	•			
Délka úseku : $I = 18,75$ [m] Koef. redukce tlaků pod dnem jámy : $počítat earrow 0,63$ [-] Geometrie Osová vzdálenost profilů : $a = 1,50$ [m] Průřez Katalog Svařovaný Název : HE 280 B I = 1,28E-04 [m ⁴ /m] Wy ₁ = 9,176E-03 [m ² /m] I = 1,28E-04 [m ⁴ /m] Wy ₁ = 9,176E-04 [m ³ /m] W _{pLy} = 1,023E-03 [m ³ /m] Max. deformace = -32,8 mm Max. deformace = -32,8 mm Max. posouvající síla na průřez $Q_{max} = 438,74$ kN Max. moment na průřez $M_{max} = 323,30$ kNm Normálová síla na průřez (Vliv kotev) N = 582,43 kN	Název průřezu :	I-průřez : HE 280 B, a = 1,50 m	Vlastní			
GeometrieOsová vzdálenost profilů : $a = 1,50$ [m]Průřez $a = 1,50$ [m]KatalogSvařovanýNázev : HE 280 B $a = 1,28E-04$ [m ⁴ /m]Informace $a = 8,76E-03$ [m ² /m] $A = 8,76E-03$ [m ² /m] $u = 1,28E-04$ [m ⁴ /m]Wy1 = 9,176E-04 [m ³ /m] $W_{ply} = 1,023E-03$ [m ³ /m]Max. deformace $a = -32,8$ mmMax. deformace $a = -32,8$ mmMax. opsouvající síla na průřez $Q_{max} = 438,74$ kNMax. moment na průřez $M_{max} = 323,30$ kNmNormálová síla na průřez (vliv kotev) N $a = 582,43$ kNSMYK :VYHOVUJE(81,1%)	Délka úseku : Koef. redukce tlaků pod dr	I = 18,75 nem jámy : počítat ▼	[m] 0,63 [–]			
Průřez Katalog Svařovaný Název : HE 280 B Informace A = 8,76E-03 $[m^2/m]$ I = 1,28E-04 $[m^4/m]$ Wy1 = 9,176E-04 $[m^3/m]$ Wply = 1,023E-03 $[m^3/m]$ Max. deformace = -32,8 mm Max. deformace = -32,8 mm Max. posouvající síla na průřez Q_{max} = 438,74 kN Max. moment na průřez M_{max} = 323,30 kNm Normálová síla na průřez (vliv kotev) N = 582,43 kN SMYK : VYHOVUJE (81,1%)	— Geometrie Osová vzdálenost profilů :	a = 1,50	[m]			
Informace I = 1,28E-04 $[m^4/m]$ Wy1 = 9,176E-04 $[m^3/m]$ Wply = 1,023E-03 $[m^3/m]$ Max. deformace = -32,8 mm Max. posouvající síla na průřez Q _{max} = 438,74 kN Max. moment na průřez M _{max} = 323,30 kNm Normálová síla na průřez (vliv kotev) N = 582,43 kN	– Průřez Katalog Svařova Název : HE 280 B	ný				
$W_{y1} = 9,176E-04 [m^3/m]$ $W_{pl,y} = 1,023E-03 [m^3/m]$ Max. deformace = -32,8 mm Max. posouvající síla na průřez $Q_{max} = 438,74 kN$ Max. moment na průřez $M_{max} = 323,30 kNm$ Normálová síla na průřez (vliv kotev) N Wax. moment na průřez (vliv kotev) N SMYK : VYHOVUJE Vásledky Vásledky	— Informace] I = 1,28E-04 [m ⁴	/m]			
Max. deformace = -32,8 mm Max. posouvající síla na průřez Q _{max} = 438,74 kN Max. moment na průřez M _{max} = 323,30 kNm Normálová síla na průřez (vliv kotev) N = 582,43 kN Max. moment na průřez (vliv kotev) N = 582,43 kN Max. moment na průřez (vliv kotev) N = 582,43 kN Max. moment na průřez (vliv kotev) N = 582,43 kN Max. moment na průřez (vliv kotev) N = 582,43 kN Max. moment na průřez (vliv kotev) N = 582,43 kN Max. moment na průřez (vliv kotev) N = 582,43 kN Max. moment na průřez (vliv kotev) N = 582,43 kN	W _{y1} = 9,176E-04 [m ³ /m] W _{pl,y} = 1,023E-03 [m ³ ,	/m]			
	Max. deformace Max. posouvající síla n Max. moment na průře Normálová síla na průi	= -32,8 m a průřez Q _{max} = 438,74 kN z M _{max} = 323,30 kN řez (vliv kotev) N = 582,43 kN	m I Im I	— Výsledky OHYB A TL SMYK :	AK : VYHOVUJE VYHOVUJE	(78,7%) (81,1%)

Varianta 2: Záporové pažení – Únosnost kotev

Číslo▲								
	Hloubka	Název	Maximální síla	Přetržení kotvy	Vytržení ze zeminy	Vytržení ze zálivky	Využití	Posouzení
	z [m]		F [kN]	R _t [kN]	R _e [kN]	R _c [kN]	[%]	
1	2,75	VSL dočasná kotva 0.6" S 1860	357,16	413,33	393,23	433,50	90,83	Vyhovuje
2	7,75	VSL dočasná kotva 0.6" S 1860	562,34	826,67	878,09	613,06	91,73	Vyhovuje
3	12,75	VSL dočasná kotva 0.6" S 1860	726,21	1033,33	1167,62	795,36	91,31	Vyhovuje

Varianta 2: Záporové pažení – Únosnost převázky

Varianta 2: Záporové pažení – Únosnost pažiny

Zajištění stavební jámy

Varianta 3: Hřebíkovaný svah

Varianta 3: Hřebíkovaný svah – Vnitřní stablita – rovná smyková plocha

Varianta 3: Hřebíkovaný svah – Vnitřní stabilita – lomená smyková plocha

Varianta 3: Hřebíkovaný svah – Vnitřní stabilita – únosnost hřebů

Únosnost hřebů

Posouzení únosnosti hřebů

Redukční součinitel aktivního tlaku : kn =

Posouzení únosnosti hřebů

Ŧ

0,85 [-]

Redukční součinitel aktivního tlaku pro posouzení únos. hřebů k_n = 0,85.

Uřoh	Hloubka	Typy hřebů	Únosnost hřebu	Síla v hřebu	Posouzení
пер	h [m]		[kN]	[kN]	
1	3,00	GEWI D=25 mm	75,81	56,22	Vyhovuje
2	6,00	GEWI D=25 mm	49,34	0,00	Vyhovuje
3	9,00	GEWI D=25 mm	61,74	0,00	Vyhovuje
4	12,00	GEWI D=25 mm	81,71	0,00	Vyhovuje
5	15,00	GEWI D=25 mm	94,48	0,00	Vyhovuje

Maximálně využitý je hřeb č. 1 Únosnost hřebu = 75,81 kN > 56,22 kN = Síla v hřebu Únosnost hřebů VYHOVUJE

Varianta 3: Hřebíkovaný svah – Únosnost stříkaného betonu

Varianta 3: Hřebíkovaný svah – Vnější stabilita svahu

C) Převést na kruh

Posouzení stability svahu (Sarma) Využití : 80,5 % Stabilita svahu VYHOVUJE

Děkuji Vám za pozornost